Is the Hofstadter energy spectrum observable in far-infrared absorption?

> Viðar Guðmundsson Science Institute University of Iceland IS-107 Reykjavík vidar@raunvis.hi.is

and

Rolf R. Gerhardts Max-Planck Institut für Festkörperforschung D-70569 Stuttgart gerha@klizix.mpi-stuttgart.mpg.de

July 5, 1996

Goals

- Bernstein modes?
- Effects of modulation
- Is the Hofstadter butterfly visible?

Ground state

2DEG in a periodic potential

 $V(x,y) = V\left\{\cos\left(gx\right) + \cos\left(gy\right)\right\}$

 $g = 2\pi/L$, with the periodic length LPerpendicular magnetic field $\vec{B} = B\hat{z}$ Integer number pq of flux units $\Phi_0 = hc/e$ flows through a lattice unit cell with area $A = L^2 \longrightarrow B = pq\Phi_0/A$

Magnetic length: $l = \sqrt{c\hbar/eB}$ Cyclotron frequency: $\omega_c = eB/m^*c$

Commensurability between l and L splits each Landau level into pq subbands

Hartree interacting electrons Finite temperature T

 N_s electrons in a unit lattice cell Filling factor of Landau levels is $\nu = N_s/pq$

Is strong modulation and short period needed? What are the effects of ν ?

FIR-absorption

Self-consistent response to the in-field

$$\mathbf{E}_{ext}(\mathbf{r},t) = -i\mathcal{E}_0 \frac{\mathbf{k} + \mathbf{G}}{|\mathbf{k} + \mathbf{G}|} \exp\left\{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r} - i\omega t\right\}$$

System properties $\rightarrow \epsilon_{\mathbf{G},\mathbf{G}'}(\mathbf{k},\omega) \rightarrow$ self-consistent field $-\nabla \phi_{sc}$

$$\sum_{\mathbf{G}'} \epsilon_{\mathbf{G},\mathbf{G}'}(\mathbf{k},\omega) \phi_{sc}(\mathbf{k}+\mathbf{G}',\omega) = \phi_{ext}(\mathbf{k}+\mathbf{G},\omega)$$

Joule heating \rightarrow power absorption

$$P(\mathbf{k} + \mathbf{G}, \omega) = -\frac{\omega}{4\pi} \Im \{ \mathcal{E}_0 \phi_{sc}(\mathbf{k} + \mathbf{G}, \omega) \}$$

Inter and intra Landau band excitations

L=100nm, pq=2, $h\omega_c$ =1.429meV, T=1K, V=0.4meV, Ns=1.00

Are we seeing the two Hofstadter subbands? Two peaks or not, for pq = 2 are sensitive to modulation strength and filling factor ν Can we see three peaks for pq = 3?

 $L=50\;\mathrm{nm},\,V=4\;\mathrm{meV},\,pq=3,\,\mathrm{and}~\nu=5/6$

Conclusions

- Bernstein modes
- Hofstadter subband structure is found in absorption due both to inter- and intra-Landau-band magnetoplasmon
- It depends strongly on filling factor ν and modulation strength V
- FIR-absorption has similar "sensitivity" as the TDOS
- Coulomb interaction weakens selection rules when $\nu \neq$ integer