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OverviewIn this 
hapter we shall use phase transitions and a simple modelthat shows a phase transition, the Ising model, to give a physi
alapproa
h to �Monte Carlo� methods.Later on, we shall introdu
e further �elds where Monte Carlomethods are heavily used.



1 Phase transitionsAll around we have material in di�erent phases

• Blood plasma in a liquid phase

• Stones in a solid state
• Oxygen in the air in a gas phaseUnder di�erent 
onditions all these systems 
an be in di�erent phases

The phase 
an be governed by, temperature, pressure, volume, andmagneti
 �eld
In our environment we have some materials, like water, 
oexisting inall phases



1.1 The melting of i
eIn an i
e 
ube, just below freezing, the H2O mole
ules are arestrongly 
orrelated due to the
van der Waals for
esThe mole
ules move slightly around the equilibrium position andmost of the energy is stored in vibrations linearly proportional to thetemperature T

Evib. ∼ kBTwith kB the Boltzmann 
onstant



• T < 0◦CMole
ules sti
k together, strong 
orrelation (i
e).

Evib. < EBinding energy of i
e

• 0◦C < T < 100◦C.Moderate 
orrelation, mole
ules slip and �ow (water).

EBinding energy of i
e < Evib. < EBinding energy of water

• T > 100◦CAlmost no 
orrelation, �free� motion of mole
ules (vapor).

Evib. > EBinding energy of water



1.2 CooperationAll around us we have parti
les, atoms, mole
ules, ele
trons, and ionsintera
ting with various strength.

Phase transitions, and other pro
esses in nature, are 
aused by
olle
tive motion of the entities in the system. The properties ofindividual entities are lost and phenomena o

ur that are notexpe
ted for single-entities.

Examples:

• Super
ondu
tion in some metals at low T .
• Ma
ros
opi
 magneti
 phenomena.

→: Emergent behavior.



1.3 Phase diagramsMore variables than temperature 
an 
ontrol phase transitions.Examples are pressure (P ), volume (V ), and magneti
 �eld (H).

If there is more than one relevant variable it is 
onvenient to usephase diagrams to determine the phase as a fun
tion of T of P . . .
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From the phase diagram we see:
• How the boiling point 
hanges with P .
• How the melting point de
reases with in
reasing P .



2 Monte Carlo methods

• Name used for many 
omputational methods that in one way oranother rely on random numbers.

• One might think these methods are only used for pro
esses thatare inherently random, this is not true.Examples of appli
ation:
• Cal
ulation of high-dimensional integrals.
• Ground state energy of mole
ules.
• Motion and energy loss of neutrons in solid state.



2.1 How does MC work?Often we need an average value of very many terms. It 
an be theoriginal problem we are interested in or a problem has beentransformed into that form.

The average (or the mean value) is a sum over all terms multiplied bythe probability of ea
h term P .
E =

∑

i

P (Ei)Ei

Often the number of terms is so large that we 
an never 
al
ulate allof them.



Here MC helps by sele
ting the most probable terms and �nd theirmean value.
Similar ideas are behind polls, where a small ensemble is fo
used on,in order to �nd out the properties of a mu
h larger ensemble.

(Of 
ourse there are many approximation s
hemes that do not rely onMonte Carlo methods).



2.2 MC and integrationOften algorithms for numeri
al integration use equally spa
ed pointsin the interval to estimate the integral
I =

∫ b

a

dx f(x) ≃
N
∑

i=1

αif(xi)where xi are equally spa
ed in (a, b).



The sum 
an be tra
ked as a mean value, and MC methods 
an beused for the integral
I =

∫ b

a

dx f(x) ≃ 1

N

N
∑

i=1

f(xi)where xi are randomly sele
ted in (a, b).

MC methods make it possible to sele
t most of the points where theintegrand is large.



f(x)

x
a b

→ Better estimate of an integral for the same number of points!How are the points distributed in the interval?



2.3 Another MC exampleThe number π 
al
ulated by random numbers. π 
an be de�ned by theintegral
π = 4

Z

1

0

dx

Z

1

0

dy θ(1 − x
2
− y

2)where θ is the Heaviside step fun
tion.
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We make many random number pairs (xi, yi), i = 1, . . . , N . Then

π = 4
1

N

N
X

i=1

θ(1 − x
2

i − y
2

i ).This sum is simply the number of random number pairs inside the quarter
ir
le.
This 
an simply be extended to higher dimensions, for example 3

π =
3

4
8

1

N

N
X

i=1

θ(1 − x
2

i − y
2

i − z
2

i ).



2.4 Error estimate in MCConsider the integral
I =

∫ b

a

dxf(x) ≃ 1

N

N
∑

i=1

f(x(yi))

w(x(yi))
=

1

N

N
∑

i=1

fi.The laws of statisti
s give
σ2
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where σf is the width of the distribution of the f ′

is (independent of

N for very large N) and σI is the error in the integral.

Important is that σI =
σf√
N



3 Simplisti
 approa
h to statisti
al physi
s

• Is the bran
h of physi
s des
ribing large ensembles of intera
tingparti
les using either 
lassi
al or quantum physi
s in 
onjun
tionwith statisti
s.
• Consider a system in one of many states α = 1, 2, . . . with energy

Eα. We assume the system is in equilibrium with a thermal bathat temperature T .The probability that the system is in state α is given by

P (E) =
1

Z
e−βEαwhere β = 1/kBT and Z =

∑

α e−βEα .
• This probability distribution is the 
anoni
al distribution and isvalid for systems in equilibrium with a heat bath at T .



• On basis of this distribution we 
an 
al
ulate many quantities� Mean energy, (written as E or 〈E〉)

En(T ) =
∑

α

En
α P (Eα).

� Flu
tuation of the energy (distribution width)

∆E(T ) =

(

E2(T ) −
(

E(T )
)2
)1/2

.� And mu
h more.
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