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OverviewIn this hapter we shall use phase transitions and a simple modelthat shows a phase transition, the Ising model, to give a physialapproah to �Monte Carlo� methods.Later on, we shall introdue further �elds where Monte Carlomethods are heavily used.



1 Phase transitionsAll around we have material in di�erent phases

• Blood plasma in a liquid phase

• Stones in a solid state
• Oxygen in the air in a gas phaseUnder di�erent onditions all these systems an be in di�erent phases

The phase an be governed by, temperature, pressure, volume, andmagneti �eld
In our environment we have some materials, like water, oexisting inall phases



1.1 The melting of ieIn an ie ube, just below freezing, the H2O moleules are arestrongly orrelated due to the
van der Waals foresThe moleules move slightly around the equilibrium position andmost of the energy is stored in vibrations linearly proportional to thetemperature T

Evib. ∼ kBTwith kB the Boltzmann onstant



• T < 0◦CMoleules stik together, strong orrelation (ie).

Evib. < EBinding energy of ie

• 0◦C < T < 100◦C.Moderate orrelation, moleules slip and �ow (water).

EBinding energy of ie < Evib. < EBinding energy of water

• T > 100◦CAlmost no orrelation, �free� motion of moleules (vapor).

Evib. > EBinding energy of water



1.2 CooperationAll around us we have partiles, atoms, moleules, eletrons, and ionsinterating with various strength.

Phase transitions, and other proesses in nature, are aused byolletive motion of the entities in the system. The properties ofindividual entities are lost and phenomena our that are notexpeted for single-entities.

Examples:

• Superondution in some metals at low T .
• Marosopi magneti phenomena.

→: Emergent behavior.



1.3 Phase diagramsMore variables than temperature an ontrol phase transitions.Examples are pressure (P ), volume (V ), and magneti �eld (H).

If there is more than one relevant variable it is onvenient to usephase diagrams to determine the phase as a funtion of T of P . . .
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From the phase diagram we see:
• How the boiling point hanges with P .
• How the melting point dereases with inreasing P .



2 Monte Carlo methods

• Name used for many omputational methods that in one way oranother rely on random numbers.

• One might think these methods are only used for proesses thatare inherently random, this is not true.Examples of appliation:
• Calulation of high-dimensional integrals.
• Ground state energy of moleules.
• Motion and energy loss of neutrons in solid state.



2.1 How does MC work?Often we need an average value of very many terms. It an be theoriginal problem we are interested in or a problem has beentransformed into that form.

The average (or the mean value) is a sum over all terms multiplied bythe probability of eah term P .
E =

∑

i

P (Ei)Ei

Often the number of terms is so large that we an never alulate allof them.



Here MC helps by seleting the most probable terms and �nd theirmean value.
Similar ideas are behind polls, where a small ensemble is foused on,in order to �nd out the properties of a muh larger ensemble.

(Of ourse there are many approximation shemes that do not rely onMonte Carlo methods).



2.2 MC and integrationOften algorithms for numerial integration use equally spaed pointsin the interval to estimate the integral
I =

∫ b

a

dx f(x) ≃
N
∑

i=1

αif(xi)where xi are equally spaed in (a, b).



The sum an be traked as a mean value, and MC methods an beused for the integral
I =

∫ b

a

dx f(x) ≃ 1

N

N
∑

i=1

f(xi)where xi are randomly seleted in (a, b).

MC methods make it possible to selet most of the points where theintegrand is large.
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→ Better estimate of an integral for the same number of points!How are the points distributed in the interval?



2.3 Another MC exampleThe number π alulated by random numbers. π an be de�ned by theintegral
π = 4
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We make many random number pairs (xi, yi), i = 1, . . . , N . Then

π = 4
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i ).This sum is simply the number of random number pairs inside the quarterirle.
This an simply be extended to higher dimensions, for example 3
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2.4 Error estimate in MCConsider the integral
I =

∫ b

a

dxf(x) ≃ 1

N

N
∑

i=1

f(x(yi))

w(x(yi))
=

1

N

N
∑

i=1

fi.The laws of statistis give
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where σf is the width of the distribution of the f ′

is (independent of

N for very large N) and σI is the error in the integral.

Important is that σI =
σf√
N



3 Simplisti approah to statistial physis

• Is the branh of physis desribing large ensembles of interatingpartiles using either lassial or quantum physis in onjuntionwith statistis.
• Consider a system in one of many states α = 1, 2, . . . with energy

Eα. We assume the system is in equilibrium with a thermal bathat temperature T .The probability that the system is in state α is given by

P (E) =
1

Z
e−βEαwhere β = 1/kBT and Z =

∑

α e−βEα .
• This probability distribution is the anonial distribution and isvalid for systems in equilibrium with a heat bath at T .



• On basis of this distribution we an alulate many quantities� Mean energy, (written as E or 〈E〉)

En(T ) =
∑

α

En
α P (Eα).

� Flutuation of the energy (distribution width)

∆E(T ) =

(

E2(T ) −
(

E(T )
)2
)1/2

.� And muh more.
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