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2 DESCRIPTION OF THE SYSTEM

1 Introduction

Electrons moving in a in�nitely long wire is a well known problem and rather easily
solved. But what if the wire is �nite in length and in a constant magnetic �eld, per-
pendicular to the wire? This system cannot be solved analytically. Therefore, one must
search the toolbox of numerical methods. Our task is to �nd the eigenvalues and eigen-
vectors of the Hamiltonian of our system. We will turn it into a eigenvalue problem of
an in�nite matrix but solve it for a �nite one (numerical part). To add a little extra fun
to the system, we also place a Gauss potential in the wire and look for bound states.

2 Description of the system

2.1 The Basic System with Magnetic Field

-
x

6y

r
-Lx2

r
Lx
2

iuB

Figure 1. Diagram of the system � a �nite length wire in a constant
magnetic �eld and central Gauss potential (not depicted).

The system is depicted on �gure 1. The length of the wire stub is Lx and we assume
parabolic con�nement in the y-direction of strength Ω0. The basic Hamiltonian is thus

Ĥbasic = 1
2mP̂2 + 1

2mΩ2
0Ŷ

2 − 1
2Lx < X̂ < 1

2Lx (1)

where P̂ is the conjugate momentum operator, m the e�ective mass of the electron and
X̂ and Ŷ are the x- and y-position operators.

Now we consider the potential due to a constant magnetic �eld in the z direction,
B(r) = Bez. Because of the magnetic �eld, the operator denoting mechanical momentum
( 1

2mP̂2) no longer depends on P̂ only. We need the substitution

P̂ 7→ P̂− eÂ(R̂) (2)

where e is the charge of an electron and Â is a vector �eld dependent on position
R̂ = (X̂, Ŷ , Ẑ), such that B(r) = ∇ × A(r) [1, pp. 315-322]. We choose the Landau
gauge, i.e.

A(r) = −Byex = (−By, 0, 0) (3)
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2.2 Gauss Potential 2 DESCRIPTION OF THE SYSTEM

Our Hamiltonian is thus, putting eqs. (1), (2) and (3) together,

Ĥ0 = 1
2m(P̂ + eBŶ ex)2 + 1

2mΩ2
0Ŷ

2

= 1
2m

[
(P̂x + eBŶ )2 + P̂ 2

y + P̂ 2
z

]
+ 1

2mΩ2
0Ŷ

2 (4)

We note that in the z direction we have the Hamiltonian of a free particle. We therefore
ignore that part of the Hamiltonian and concentrate on the behaviour of the particle in
the x and y direction. Thus we have

Ĥ0 = 1
2m

[
(P̂x + eBŶ )2 + P̂ 2

y

]
+ 1

2mΩ2
0Ŷ

2

= 1
2m P̂

2
x +

[
1

2m P̂
2
y + 1

2m
( (

eB
m

)2︸ ︷︷ ︸
≡ω2

c

+ Ω2
0

)
Ŷ 2
]

+ eB
m P̂xŶ

= 1
2m P̂

2
x +

[
1

2m P̂
2
y + 1

2mΩ2
ωŶ

2
]

+ ~
ml2

P̂xŶ , −1
2Lx < X̂ < 1

2Lx (5)

where we have set Ω2
ω = Ω2

0 +ω2
c and l

2 = ~
eB = ~

mωc
; l is the characteristic length of the

system. We see that the system consists of a in�nite potential well in the x direction

Ĥx = 1
2m P̂

2
x , −1

2Lx < X̂ < 1
2Lx, (6)

a harmonic oscillator with frequency Ωω in the y direction

Ĥy =
1

2m
P̂ 2
y +

1
2
mΩ2

ωŶ
2 (7)

and a coupled perturbation in the x and y direction

Ŵ =
~
ml2

P̂xŶ = ωcP̂xŶ . (8)

We will exploit this representation of the Hamiltonian,

Ĥ0 = Ĥx + Ĥy + Ŵ , (9)

in our numerical calculations (see section 3).

2.2 Gauss Potential

To play a little with the system previously described, we additionally place a Gauss
potential at the centre of our wire. Then we must add the term

ŴG = −V0 exp(−β2
1X̂

2 − β2
2 Ŷ

2) (10)

to Ĥ0, where V0, β1, β2 ∈ R, thus obtaining the new Hamiltonian

Ĥ = Ĥ0 + ŴG . (11)
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3 NUMERICAL METHOD

3 Numerical Method

3.1 The basic idea

Our approach (see [3]) is to write the eigenstates of the Hamiltonian Ĥ, |α), as a linear
combination of the vectors in the well known complete orthonormal basis {|α〉} consisting
of the eigenstates of the Hamiltonian Ĥx+Ĥy, i.e. the (tensor) product of the eigenstates
of Ĥx (in�nite square well) and the eigenstates of Ĥy (harmonic oscillator), |α〉 = |nk〉 =
|ϕn〉|ψk〉 with some bijection α↔ (n, k). Thus

|α) =
∑
β

|β〉〈β|α〉 =
∑
β

Cβα|β〉 (12)

Let Eα and εα be the eigenvalues of |α〉 and |α), respectively. Now,

〈β|Ĥ|γ〉 = 〈β|Ĥx + Ĥy + Ŵ + ŴG|γ〉 = Eγδβγ + 〈β|Ŵ + ŴG|γ〉 (13)

Multiplying each side by Cγα and summing over γ gives

〈β|Ĥ

[∑
γ

Cγα|γ〉

]
=
∑
γ

Cγα

[
Eγδβγ + 〈β|Ŵ + ŴG|γ〉

]
(14)

that is, by eq. (12) and since Ĥ|α) = εα|α),∑
γ

εαCγα〈β|γ〉 =
∑
γ

Cγα

[
Eγδβγ + 〈β|Ŵ + ŴG|γ〉

]
(15)

thus giving

εαCβα =
∑
γ

Cγα

[
Eγδβγ + 〈β|Ŵ + ŴG|γ〉

]
(16)

This is an eigenvalue problem for the in�nite dimensional matrix with elements

Aβγ = Eγδβγ + 〈β|Ŵ + ŴG|γ〉 (17)

where εα are the eigenvalues with corresponding eigenvectors [C1α C2α · · · ]T . The nu-
merical step is to truncate the basis {|α〉} and solve the (then �nite) eigenvalue problem
(16). The accuracy of the results can be checked by varying the size of the basis {|α〉}.

3.2 The basis and its eigenvalues

As mentioned above, we will need a bijection between the parameter α and the pair
(n, k) to determine the basis |α〉 = |nk〉 uniquely. Our choice is to decide how many of
the vectors |ϕn〉 and |ψk〉 to use. Denote these numbers Nx and Ny, respectively, and set

α = n+ kNx (18)

where n ∈ [[1, Nx]] and k ∈ [[0, Ny − 1]], see �gure 2.
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3.3 Matrix elements 3 NUMERICAL METHOD

-
n

6
k

1 2 3 4 Nx

Nx + 1 Nx + 2 Nx + 3 Nx + 4 2Nx

2Nx + 1 2Nx + 2 2Nx + 3 2Nx + 4 3Nx

(Ny−1)Nx+1 · · · (Ny−1)Nx+3 · · · NyNx

1 2 3 4 Nx

0

1

2

Ny − 1

Figure 2. A graph of α as a function of (n, k).

Having decided upon the bijection, we will henceforth use |nk〉 and Enk in our discussion,
instead of |α〉 and Eα.

We know that

Enk = Exn + Eyk (19)

where Exn is the eigenvalue of Ĥx corresponding to |ϕn〉 and Eyk is the eigenvalue of Ĥy

corresponding to |ψk〉. Now, Ĥx is the Hamiltonian for an in�nite square well between
x = −Lx/2 and x = Lx/2, and thus

Exn =
~2n2π2

2mL2
x

= ~Ωω
a2
ω

L2
x

n2π2

2
(20)

where a2
ω = ~

mΩω
= ωc

Ωω
l2. Also, Ĥy is the Hamiltonian for a harmonic oscillator with

frequency Ωω, so

Eyk = ~Ωω

(
k +

1
2

)
. (21)

Combining these, we have

Enk = ~Ωω

[
k +

1
2

+
a2
ω

L2
x

n2π2

2

]
. (22)

3.3 Matrix elements

Each matrix element in eq. (17) is the sum of

Enkδn′nδk′k, 〈n′k′|Ŵ |nk〉 and 〈n′k′|ŴG|nk〉 .
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3.3 Matrix elements 3 NUMERICAL METHOD

The �rst term was found in eq. (22) but we need to �nd a formula for the other two.

We note that by eq. (8)

〈n′k′|Ŵ |nk〉 = ωc〈ϕn′ |P̂x|ϕn〉〈ψk′ |Ŷ |ψk〉 (23)

Since

ϕn(x) =


√

2
Lx

cos
(
nπx
Lx

)
, if n = 1, 3, 5, . . .√

2
Lx

sin
(
nπx
Lx

)
, if n = 2, 4, 6, . . .

(24)

it is easy to calculate

〈ϕn′ |P̂x|ϕn〉 = i~〈ϕn′ |∂̂x|ϕn〉 =



0 , if n+ n′ ≡2 0

−4i~
Lx

nn′

n2 − n′2
, if n+ n′ ≡4 1

4i~
Lx

nn′

n2 − n′2
, if n+ n′ ≡4 3

(25)

= (1− (−1)n+n′
) (−1)(n+n′+1)/2 2i~

Lx

nn′

n2 − n′2
(26)

With the help of ladder operators we obtain

〈ψk′ |Ŷ |ψk〉 =

√
a2
ω

2

[√
k + 1 δk′,k+1 +

√
k δk′,k−1

]
(27)

see [1, p. 499]. Putting eqs. (23), (26) and (27) together,

〈n′k′|Ŵ |nk〉 = (1− (−1)n+n′
) (−1)(n+n′+1)/2 i~ωc

√
2
a2
ω

L2
x

× nn′

n2 − n′2
[√

k + 1 δk′,k+1 +
√
k δk′,k−1

]
(28)

By eq. (10)

〈n′k′|ŴG|nk〉 = −V0〈ϕn′ | exp(−β2
1X̂

2)|ϕn〉〈ψk′ | exp(−β2
2 Ŷ

2)|ψk〉 ≡ −V0I
x
n′nI

y
k′k (29)

Now, from eq. (24) we see that if n+n′ ≡2 1, then ϕ∗n′(x)ϕn(x)e−β
2
1x

2
is an odd function.

Hence

Ixn′n = 〈ϕn′ | exp(−β2
1X̂

2)|ϕn〉 = 0 if n+ n′ ≡2 1 (30)

since the integration interval is symmetric. On the other hand, if n+ n′ ≡2 0, then

Ixn′n =
2
Lx

∫ Lx/2

−Lx/2
sin
(
n′πx

Lx

)
sin
(
nπx

Lx

)
e−β

2
1x

2
dx

=
2
π

∫ π/2

0

(
cos(n− n′)x− cos(n+ n′)x

)
e−α

2
1x

2
dx (n+ n′ ≡4 0) (31)
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3.3 Matrix elements 3 NUMERICAL METHOD

or

Ixn′n =
2
Lx

∫ Lx/2

−Lx/2
cos
(
n′πx

Lx

)
cos
(
nπx

Lx

)
e−β

2
1x

2
dx

=
2
π

∫ π/2

0

(
cos(n− n′)x− cos(n+ n′)x

)
e−α

2
1x

2
dx (n+ n′ ≡4 2) (32)

where α1 =
β1Lx
π

. We have for some N ∈ Z,

∫ π/2

0
cos(Nx)e−α

2
1x

2
dx =

1
2

∫ π/2

0

(
eiNx + e−iNx

)
e−α

2
1x

2
dx

=
1
2

∫ π/2

0
e−N

2/4α2
1

[
e−(α1x−i N

2α1
)2 + e−(α1x+i N

2α1
)2
]

dx

=
1
2

e−N
2/4α2

1

[∫ α1π
2
−i N

2α1

−i N
2α1

e−x
2 dx
α1

+
∫ α1π

2
+i N

2α1

i N
2α1

e−x
2 dx
α1

]

=
e−N

2/4α2
1

2α1

√
π

2

[
erf
(
α1π

2 − i N2α1

)
− erf

(
−i N2α1

)
+ erf

(
α1π

2 + i N2α1

)
− erf

(
i N2α1

)]
=
√
π

4α1
e−N

2/4α2
1

[
erf
(
α1π

2 − i N2α1

)
+ erf

(
α1π

2 + i N2α1

)]
=
√
π

2α1
e−N

2/4α2
1 Re

[
erf
(
α1π

2 + i N2α1

)]
(33)

Note that this is also true for N = 0. By combining eqs. (31), (32) and (33) the result is

Ixn′n =
1

α1
√
π

[
e−(n−n′)2/4α2

1 · Re
[
erf
(

(n−n′)i+πα2
1

2α1

)]
+ (−1)n+1e−(n+n′)2/4α2

1 · Re
[
erf
(

(n+n′)i+πα2
1

2α1

)]]
(34)

Next we consider

Iyk′k =


2√

2k+k′πk!k′!

∫ +∞

0
Hk(ξ)Hk′(ξ)e−α2ξ2 dξ , if k + k′ ≡2 0

0 , if k + k′ ≡2 1

(35)

where Hk(ξ) is the kth Hermite polynomial and α2 = 1
2 + β2

2a
2
ω. By [2, 3.461:2 and 3],

we have for all α2 > 0 and n ∈ N0 that∫ +∞

0
ξ2ne−α2ξ2 dξ =

(2n− 1)!!
2(2α2)n

√
π

α2
(36)

and ∫ +∞

0
ξ2n+1e−α2ξ2 =

n!
2α2n+ 1

. (37)
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3.4 Procedure 3 NUMERICAL METHOD

Also, by [2, 8.952:2], we have the recursion formula

Hk+1(ξ) = 2ξHk(ξ)− 2kHk−1(ξ) (38)

By using the recursion formula above to �nd the coe�cients of each Hermite polynomial,
we can compute the integral in eq. (35) exactly by using eqs. (36) and (37). We have
obtained

〈n′k′|ŴG|nk〉 =
−V0

α1
√
π

[
e−(n−n′)2/4α2

1 · Re
[
erf
(

(n−n′)i+πα2
1

2α1

)]
+ (−1)n+1e−(n+n′)2/4α2

1 · Re
[
erf
(

(n+n′)i+πα2
1

2α1

)]]

× 1
2(1 + (−1)k+k′

)
2√

2k+k′πk!k′!

∫ +∞

0
Hk(ξ)Hk′(ξ)e−α2ξ2 dξ (39)

if n+ n′ ≡2 0 and k + k′ ≡2 0, but otherwise 〈n′k′|ŴG|nk〉 = 0.

Each of our matrix elements can now be calculated by summing the results of eqs. (22),
(28) and (39). By choosing an appropriate Fortran subroutine from e.g. the MKL Library
we can then obtain an approximation to the eigenvalues of Ĥ and its eigenvectors as a
linear combination of the truncated basis {|α〉}NxNyα=1 .

3.4 Procedure

An overview of the program codes used for the numerical calculations along with their
connections is shown in �gures 3 and 4. The header of each code can be found in ap-
pendix A, but the interested reader may contact the author for a full version of the
project, which includes all program codes.

A brief summary of the functionality of each program follows:

Mod_Precision: De�nes global variables for single (4), double (8) and working (8)
precision.

Mod_Param: De�nes various global variables regarding the Hamiltonian Ĥ (Nx, Ny, B,
Ω0, V0, etc.), some physical constants, numbers often used (inverse integers, factorials,
etc.), and some constants, variables and arrays needed by the ZHEEVD subroutine.

mainEnergy: Runs the eigen subroutine (see below) and prints the possible energy
values to the �le eigenval??????.dat where the �rst 3 question marks are to be replaced
by Nx and the latter 3 question marks by Ny.

mainProbDens: Runs the eigen subroutine (see below) and calculates the probability
density of some eigenstates of Ĥ on some grid. Prints the density values to the �le
density????????.dat where the �rst 3 question marks are to be replaced by Nx, the
next 3 question marks by Ny and the last 2 by the number of the eigenstate.

9
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3.4 Procedure 3 NUMERICAL METHOD

mainEnergy
program

> eigenval??????.dat
OO

intsifill
subroutine

factorials
subroutine

eigen
subroutine

�� real(Nxy) E
�� complex(Nxy,Nxy) LinComb

�� uu

oo

ff]]UU

rectHash
subroutine

�� integer i,n,k

Erf_Precise
module

ZHEEVD
subroutine

�� complex(Nxy,Nxy) H
� real(Nxy) E

(...and some more control and
computational parameters...)

Mod_Precision
module

� real IntHermGauss
function

� integer ki,kj

ll

Mod_Param
module

HermiteVec
subroutine

� integer n
� real(n) HermV

Figure 3. An overview of the program codes used to solve the eigen-
value problem. An arrow from A to B means that A is used by B.
The two freestanding modules are however used in all the other codes.
Notation: variable in � ; variable out � ; write to �le > ; NxNy = Nxy .
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3.4 Procedure 3 NUMERICAL METHOD

mainProbDens
program

> density????????.dat
OO

intsifill
subroutine

factorials
subroutine

eigen
subroutine

�� real(Nxy) E
�� complex(Nxy,Nxy) LinComb

�� uu

oo

gg[[UUSS

rectHash
subroutine

�� integer i,n,k

Erf_Precise
module

ZHEEVD
subroutine

�� complex(Nxy,Nxy) H
� real(Nxy) E

(...and some more control and
computational parameters...)

Mod_Precision
module

� real IntHermGauss
function

� integer ki,kj

jj

Mod_Param
module

basisfnval
subroutine

� integer n,k
� realx,y
� realres

ff

HermiteVec
subroutine

� integer n
� real(n) HermV

Figure 4. An overview of the program codes used to calculate the
proability density of the eigenstates. An arrow from A to B means
that A is used by B. The two freestanding modules are however used
in all the other codes. Notation: variable in � ; variable out � ; write to
�le > ; NxNy = Nxy .

11



3.4 Procedure 3 NUMERICAL METHOD

eigen: Calculates the matrix elements in eq. (17) (see also eqs. (22), (28), (39)) with
the help of intsifill, factorials, deltafn, rectHash and IntHermGauss. Uses the
MKL Library subroutine ZHEEVD to calculate the eigenvalues of Ĥ and its eigenvectors'
linear combination of {|α〉}NxNyα=1 (i.e. the coe�cients of each linear combination).

intsifill: Fills inverse integers into the global array intsi.

factorials: Fills factorials into the global array factorial and the square root of
inverse factorials into the global array factorialqi.

rectHash: The bijection described by eq. (18). This subroutine takes in three integers,
i, and k (here i stands for α in eq. (18)). If i = −1, then the subroutine calculates the
value of i from (n, k). Otherwise, it calculates the value of (n, k) from i.

Erf_Precise: Provides the function ErfPrecise which calculates precise values of the
complex error function, erf(z).

ZHEEVD: This subroutine comes from the MKL Library. It calculates the eigenvalues
and eigenvectors of a complex Hermitian matrix using a divide and conquer algorithm.

IntHermGauss: Computes the value of the integral in eq. (39).

HermiteVec: Computes the coe�cients of the nth Hermite polynomial and stores them
in the array HermV.

12



4 RESULTS

4 Results

4.1 Varying magnetic �eld and no Gauss potential

We set V0 = 0meV and

m = 0.067me = 6.103× 10−32 kg (we assume the wire is made of GaAs)

Lx = 300nm
~Ω0 = 1meV (40)

Nx = 128
Ny = 12

We consider the three cases B = 0T, B = 0.5T and B = 1T.

4.1.1 Eigenvalues - the energies εα

The eigenvalues (possible energy values) of the system are shown in �gure 5. We note
that when B = 0T the energy curve is pretty smooth for α ∈ [[1, 4]] but then makes
a bend for α = 5, i.e. the di�erence between ε3 and ε4 is much more than between ε4

and ε5. By comparison to energy bands of a wire in a magnetic �eld that is for example
periodic in x and with �hard walls� in y, one would expect the probability density of the
4th excited state (corresponding to α = 5) to be fairly localised in the bulk of the wire.
This is indeed the case, see the graph in the bottom left corner of �gure 6. Similarly for
B = 0.5T, we expect some kind of bulk localisation for the 6th excited state (α = 7).
Again our assumption is good, see middle graph, second from top, in �gure 7.

Figure 5. The eigenvalue (energy) εα as a function of the state number α for three
strengths of the magnetic �eld: B = 0T, B = 0.5T and B = 1T.
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4.1 Varying magnetic �eld and no Gauss potential 4 RESULTS

Figure 6. The probability density of the ground state (topmost line) and the �rst four
excited states (2nd line to 5th line) for magnetic �eld strength B = 0T, B = 0.5T and
B = 1T (along each line).
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4.1 Varying magnetic �eld and no Gauss potential 4 RESULTS

Figure 7. The probability density of the �fth to ninth excited states (from top to
bottom) for magnetic �eld strength B = 0T, B = 0.5T and B = 1T (along each line).
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4.2 Constant magnetic �eld and Gauss potential 4 RESULTS

4.1.2 Probability distribution of the eigenstates

The probability density (squared norm of the wave function Ψn(x, y)) of the ground state
and the �rst nine excited states is shown in �gures 6 and 7 for B = 0T, B = 0.5T and
B = 1T. The graphs in the �gures are ordered such that state number increases from
top to bottom and the magnetic �eld increases from left to right.

Considering �gures 6 and 7 we notice how the magnetic �eld has very little e�ect on the
ground state but increasingly a�ects the possible position of the electron as its excitation
increases, gradually pushing it to the sides of the wire stub and forming a loop. This is
as one would expect, since as the electron's energy increases, its velocity increases and
thus the magnetic �eld has more e�ect on it - pushing it perpendicular o� its route in
the x-y plane.

4.2 Constant magnetic �eld and Gauss potential

We use the same parameters as in (40) but also

B = 1T
β1 = 15/Lx (41)

β2 = 1/aw

and consider V0 = ±3meV and V0 = 0meV. The Gauss potential for V0 = 3meV is
depicted in �gure 8.

Figure 8. The Gauss potential for V0 = 3meV seen from aside and from above.
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4.2 Constant magnetic �eld and Gauss potential 4 RESULTS

4.2.1 Eigenvalues - the energies εα

The possible energy values of the system are shown in �gure 9. As one would expect,
the negative Gauss potential reduces the energy values εα whereas the positive Gauss
potential raises the energy values. Note that the energy of the ground state is negative
for V0 = −3meV.

Figure 9. The eigenvalue (energy) εα as a function of the state number α with B = 1T
and for three strengths of the Gauss potential: V0 = −3meV, V0 = 0meV and V0 =
3meV.

4.2.2 Probability distribution of the eigenstates

The probability density of the ground state and the �rst nine excited states is shown in
�gures 10 and 11 for V0 = ±3meV and V0 = 0meV. First of all we notice how the gound
state (top row in �gure 10) either concentrates tighter to the centre of the wire as the
negative Gauss potential (V0 = −3meV) traps the electron, or splits in two o�-centre
tops as the positive Gauss potential (V0 = 3meV) repulses the electron from the centre.
In the second row of �gure 10 we see how the �rst excited state is a�ected by the positive
Gauss potential just as one would expect: the two tops are pushed further apart. The
e�ect of the negative Gauss potential is a little peculiar, as the electron is drawn to the
centre but stays however away from it such that the probability density forms a hollow
cone (see �gure 12 for a view from above).

Moving down the rows of �gures 10 and 11 we see how the magnetic �eld gradually
extinguishes the e�ect of the Gauss potential since the magnetic �eld pushes the electron
to the sides of the wire, out of the Gauss potential's reach. An exception is the 9th excited
state in the case of negative Gauss potential (lower left corner of �gure 11). There we
have once more a bulk localisation, as discussed in section 4.1.1, seeing that (10, ε10) is
the �rst point that de�ects from the smooth curve that corresponds to V0 = −3meV in
�gure 9.
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4.2 Constant magnetic �eld and Gauss potential 4 RESULTS

Figure 10. The probability density of the ground state (topmost line) and the �rst four
excited states (2nd line to 5th line) for magnetic �eld B = 1T and Gauss potential of
strength V0 = −3meV, V0 = 0meV and V0 = 3meV (along each line). Note that for the
ground state, the z-axis and colouring scale is other than in the other cases (0-4.5 vs.
0-1.2).
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4.2 Constant magnetic �eld and Gauss potential 4 RESULTS

Figure 11. The probability density of the �fth to ninth excited states (from top to
bottom) for magnetic �eld B = 1T and Gauss potential of strength V0 = −3meV,
V0 = 0meV and V0 = 3meV (along each line). Note that for the 9th excited state, the
z-axis and colouring scale is other than in the other cases (0-1.4 vs. 0-1.2).
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4.3 Gauss potential and no magnetic �eld 4 RESULTS

Figure 12. The probability density of the �rst excited state for B = 1T and V0 =
−3meV, seen from aside and from above. The probability density forms a hollow cone.

4.2.3 Bound states

The ground state is most probably a bound state when V0 = −3meV, since the electron
seems to be trapped down in the Gauss potential, having negative energy.

4.3 Gauss potential and no magnetic �eld

We use the same parameters as in (40) and (41), except B = 0T, and consider the Gauss
potential strengths V0 = ±3meV and V0 = 0meV.

4.3.1 Eigenvalues - the energies εα

The possible energy values of the system are shown in �gure 13. The ground state has
negative energy for V0 = −3meV as in the case of magnetic �eld and is now even lower.

4.3.2 Probability distribution of the eigenstates

The probability density of the ground state and the �rst nine excited states is shown in
�gures 14 and 15 for V0 = ±3meV and V0 = 0meV. The changes of the ground state
are very much as in the case of magnetic �eld: The negative Gauss potential traps the
electron tightly in the middle of the wire whereas the positive Gauss potential pushes it
away from the centre. In general, the e�ect of the Gauss potential is as one would have
expected; the negative potential draws the electron towards itself and the positive one
pushes the electron away. How great the e�ect is, is in accordance with if the energy εα
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4.4 Bound states 4 RESULTS

Figure 13. The eigenvalue (energy) εα as a function of the state number α with B =
0T and for three strengths of the Gauss potential: V0 = −3meV, V0 = 0meV and
V0 = 3meV.

changes much or not for each α. For example, the probability denstity of the 1st and
5th excited states barely changes for the di�erent values of V0 in keeping with the very
little change in ε2 and ε6, see �gure 13.

4.4 Bound states

The ground state is a bound state when V0 = −3meV since it has negative energy and
no potential in the system, except the normalizable Gauss potential, is negative. In other
words, the electron is completely stuck in the Gauss potential.

21



4.4 Bound states 4 RESULTS

Figure 14. The probability density of the ground state (topmost line) and the �rst four
excited states (2nd line to 5th line) for no magnetic �eld (B = 0T) and Gauss potential
of strength V0 = −3meV, V0 = 0meV and V0 = 3meV (along each line). Note that for
the ground state and the 2nd excited state, the z-axis and colouring scale is other than
in the other cases (0-5.4 and 0-3.1 vs. 0-1.2).
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4.4 Bound states 4 RESULTS

Figure 15. The probability density of the �fth to ninth excited states (from top to
bottom) for no magnetic �eld (B = 0T) and Gauss potential of strength V0 = −3meV,
V0 = 0meV and V0 = 3meV (along each line). Note that for the 6th and 8th excited
state, the z-axis and colouring scale is not the same as in the other cases (0-1.4 and 0-2.2
vs. 0-1.2).
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5 Conclusions

We have used a numerical method to �nd the energy values and probability distribution
of an electron in a �nite length GaAs-wire, to which there is either applied a constant
magnetic �eld or a central Gauss potential or both.

In section 4.1 (no Gauss potential) we saw how the magnetic �eld had little in�uence
on the ground state but increasingly a�ected the electron with its greater excitation,
whereby the electron's probability density was gradually pushed to the sides of the wire
stub and formed a loop. Section 4.2 (magnetic �eld and Gauss potential) showed us
how the negative Gauss potential caught the electron in the ground state whereas the
positive Gauss potential kept the ground state away from the centre of the wire stub,
splitting it into two tops. There we also realised that as the electron's excitation grew,
the magnetic �eld gradually takes over the e�ect of the Gauss potential. In section 4.3
(no magnetic �eld) we observed the same e�ect of the Gauss potential on the ground
state, where the negative potential turned the ground state into a bound state and the
positive potential split it in two. We also noticed that the extent of the change in the
probability distribution due to the Gauss potential, came up to if the change in energy
of the corresponding state was great or not.
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A PROGRAM CODES' HEADS

A Program Codes' Heads

A.1 Mod_Precision

! Mod_Precision.f90

! Defines single, double and working precision.

MODULE Mod_Precision

PUBLIC

INTEGER, PARAMETER :: sp=KIND(0.0E0), dp=KIND(0.0D0)

INTEGER, PARAMETER :: wp=dp ! Use double precision as default

END MODULE Mod_Precision

A.2 Mod_Param

! Mod_Param.f90

! Defines all global variables and constants.

MODULE Mod_Param

USE Mod_Precision

IMPLICIT NONE

! --------------- SIZE OF BASIS -----------------------------------------------

INTEGER, PARAMETER :: Nx=128 ! Size of basis in x

INTEGER, PARAMETER :: Ny=20 ! Size of basis in y

INTEGER, PARAMETER :: Nxy=Nx*Ny ! Total size of basis

! --------------- VARIOUS CONSTANTS -------------------------------------------

REAL(KIND=wp), PARAMETER :: PI=atan(1._wp)*4._wp

REAL(KIND=wp), PARAMETER :: PIqi=1._wp/SQRT(PI)

REAL(KIND=wp), PARAMETER :: int2qi=1._wp/SQRT(2._wp)

REAL(KIND=wp), PARAMETER :: meV2J=1.60217648740E-22_wp ! [J/meV]

REAL(KIND=wp), PARAMETER :: J2meV=1._wp/meV2J ! [meV/J]

REAL(KIND=wp), PARAMETER :: qe=1.60217648740D-19 ! [C]

REAL(KIND=wp), PARAMETER :: hbar=6.5821189916E-13_wp ! [meV.s]

REAL(KIND=wp), PARAMETER :: hbarJ=1.05457162853D-34 ! [J.s]

REAL(KIND=wp), PARAMETER :: me=9.1093821545D-31 ! [kg]

REAL(KIND=wp), PARAMETER :: effm=0.067_wp*me ! [kg]

REAL(KIND=wp),DIMENSION(-Nx:2*Nx) :: intsi ! inverse integers

REAL(KIND=wp),DIMENSION(0:2*Ny) :: factorial

REAL(KIND=wp),DIMENSION(0:2*Ny) :: factorialqi

COMPLEX(KIND=wp), PARAMETER :: II=(0.0_wp,1.0_wp)

! --------------- BASIC SYSTEM PARAMETERS -------------------------------------

REAL(KIND=wp), PARAMETER :: Lx=300.0D-09 ! [m]

REAL(KIND=wp), PARAMETER :: B=1._wp ! [Tesla]

REAL(KIND=wp), PARAMETER :: hbarOmega0=1._wp ! [meV]

! --------------- DERIVED BASIC SYSTEM PARAMETERS -----------------------------

REAL(KIND=wp), PARAMETER :: hbaroc=hbar*qe*B/effm

REAL(KIND=wp), PARAMETER :: hbarOw=SQRT(hbarOmega0**2+hbaroc**2)

REAL(KIND=wp), PARAMETER :: Lxi=1._wp/Lx

REAL(KIND=wp), PARAMETER :: awi=SQRT((effm*(hbarOw/hbar))/hbarJ)

REAL(KIND=wp), PARAMETER :: aw=1._wp/awi

REAL(KIND=wp), PARAMETER :: aw2Lx2=hbarJ/(effm*(hbarOw/hbar)) * Lxi**2

! --------------- GAUSS POTENTIAL PARAMETERS ----------------------------------

REAL(KIND=wp), PARAMETER :: V0=3._wp ! [meV]

REAL(KIND=wp), PARAMETER :: beta1=15._wp*Lxi ! [1/m]

REAL(KIND=wp), PARAMETER :: beta2=1._wp*awi ! [1/m]

! --------------- DERIVED GAUSS POTENTIAL PARAMETERS --------------------------

REAL(KIND=wp), PARAMETER :: alpha1=beta1*Lx/PI
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A.3 mainEnergy A PROGRAM CODES' HEADS

REAL(KIND=wp), PARAMETER :: alpha2=0.5_wp+(beta2*aw)**2

REAL(KIND=wp), PARAMETER :: alpha1i=1._wp/alpha1

REAL(KIND=wp), PARAMETER :: alpha2i=1._wp/alpha2

! --------------- ZHEEVD PARAMETERS -------------------------------------------

INTEGER, PARAMETER :: lwork=Nxy**2+2*Nxy ! dimension of array work

INTEGER, PARAMETER :: lrwork=2*Nxy**2+5*Nxy+1 ! dimension of array rwork

INTEGER, PARAMETER :: liwork=5*Nxy+3 ! dimension of array iwork

COMPLEX(KIND=wp),DIMENSION(Nxy,Nxy) :: H ! The matrix of the Hamiltonian

! in the basis used, H-matrix

COMPLEX(KIND=wp), DIMENSION(lwork) :: work ! Working array for ZHEEVD

REAL(KIND=wp), DIMENSION(lrwork) :: rwork ! --''--

INTEGER, DIMENSION(liwork) :: iwork ! --''--

! jobz: compute eigenvalues only ('N') or eigenvectors also ('V')

! uplo: H is a upper ('U') or lower ('L') triangular matrix

CHARACTER(LEN=1), PARAMETER :: uplo='U'

CHARACTER(LEN=1) :: jobz='V'

INTEGER :: info ! information on success or

! failure of ZHEEVD

END MODULE Mod_Param

A.3 mainEnergy

! mainEnergy.f90

! Runs the calculation of the energy/eigenvalues of our system.

! All system parameters are defined in Mod_Param.

!

! Uses the subroutine:

! eigen from current directory

A.4 mainProbDens

! mainProbDens.f90

! Runs the calculation of the energy/eigenvalues and probability density

! of our system and prints the data to files. All system parameters are

! defined in Mod_Param.

!

! Uses subroutines:

! eigen from current directory

! rectHash from current directory

! basisfnval from current directory

A.5 eigen

! eigen.f90

! Calculates the eigenvalues (energy) of a 2D wire of length Lx with

! parabolic confinement in the y-direction, placed in a magnetic field

! B in the y-direction and a Gauss potential in x and y.

!

! Using energy in meV and the Landau gauge, A(r)=(-B,0).

!

! Parameters characteristic of the system, defined in Mod_Param:

! Lx REAL, DOUBLE Length of wire

! B REAL, DOUBLE Magnetic field strength

! hbarOmega0 REAL, DOUBLE hbar * strength of parabolic confinement

! (1/2*m * Omega0^2 * y^2)

! V0 REAL, DOUBLE strength of Gauss potential
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A.6 intsi�ll A PROGRAM CODES' HEADS

! beta1 REAL, DOUBLE Gauss decay in x

! beta2 REAL, DOUBLE Gauss decay in y

!

! Output:

! E REAL, DOUBLE Array of length Nxy; Energy spectrum of system

! LinComb COMPLEX, DOUBLE Array of dimension (Nxy,Nxy); Each column gives

! an eigenvector of the Hamiltonian as constants

! in the linear combinaton of the Nxy basis vectors

! Uses subroutines:

! factorials from current directory

! intsifill from current directory

! rectHash from current directory

! ZHEEVD from MKL (LAPACK)

A.6 intsi�ll

! intsifill.f90

! Calculates the value of inverse integers and stores them in intsi for

! future use.

A.7 factorials

! factorials.f90

! Calculates the factorial and the inverse square root of the factorial

! of 0 to 2*Ny and stores in factorial and factorialqi (see Mod_Param).

SUBROUTINE factorials()

A.8 rectHash

! rectHash.f90

! hash function i<->(n,k) for a rectangular shaped grid, counting 1=(1,0),

! 2=(2,0), ... i.e. first along x and then along y with min(x)=1, max(x)=Nx,

! and min(y)=0, max(y)=Ny-1. For Nx and Ny, see Mod_Param.

!

! If i==-1, then rectHash is (n,k)->i.

! If i/=-1, then rectHash is i->(n,k).

A.9 Erf_Precise

!____________________________________________________________________________

! Double precision complex error function

! Adapted from the Naval Surface Warfare Center Mathematics Library

! by Alan.Miller @ vic.cmis.csiro.au

! http://www.ozemail.com.au/~milleraj

! Adaptation made by Aleksandar Donev

! Latest revision - 18 September 2000

!____________________________________________________________________________
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A.10 IntHermGauss A PROGRAM CODES' HEADS

A.10 IntHermGauss

! IntHermGauss.f90

! Finds the integral of the function H_ki(x)*H_kj(x)*exp(-alpha2*x^2)

! from 0 to infinity, where alpha2>0 is defined in Mod_Param.

!

! Uses the subroutine:

! HermiteVec from current directory

A.11 HermiteVec

! HermiteVec.f90

! Finds the coefficients of the n-th Hermite polynomial and stores them in

! the array HermV.
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