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We have a finite electron system in an external potential

¢O€—i(w—|—in)t

¢ext —

The total electrostatic potential is

¢SC(r7 t) — ¢ext (I‘, t) + ¢ind (I‘, t)

where ¢oyt 1S caused by the change in the charge distribution

Pind(r,t) = —E/dr’M
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and the density variation dn(r,t) is caused by the total electrostatic

potential ¢gc(r,t)




on(r,t) = /drlx(r,r’,t)(—eqﬁsc(r’,t))

So we can have a self-consistent equation for ¢gc
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which is an integral equation in real space. It can be put on a grid
and transformed into a matrix equation, but it is more effective to

fourier transform it first
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Psc(k,w) = dext(k,w) + o2

/ da x(k, @, w)dscla,w) (+)

where a convolution property of the Coulomb kernel was used




and the fourier transform of the response function
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As (x) connects the external and the total electrostatic potential we

can compare it to D = €¢E to write for the dielectric function
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for a 3D finite electron system, in a 2D system the fourier transform
of the Coulomb kernel is different.

e(k,q,w) =4k —q) — x(k,q,w)




Numerical evaluation

Equation (%) is an integral equation, one way to solve it is on a

q-grid. (specially convenient if some symmetry can be used to reduce

the spatial dimensions).

Grid transforms it to a matrix equation

Psc = Pext + GXx¢sc or (1 - GX)¢SC = Pext

which is equivalent to

edsc = Pext O ¢sc = (1—Gx)™"




The matrix expression

$sc(w) = (1 = Gx(w))™ Pext(w) = € (W) Pext (w)

tells us that zeros in €(w) or poles in ¢ '(w) mean that small external
perturbation ¢eyt(w) could cause a huge total potential ¢sc(w) — a

resonance.

A small perturbation might cause an oscillation of the charge density

— plasma waves, plasmons.

The plasmon would not happen at any of the Bohr frequencies

wq — Wg, 1t 18 a collective mode with a depolarization shift.

In a system with a size much smaller than the wavelength of an
external EM radiation ¢eyt(w) can describe this radiation
— we can calculate the resonance frequencies at which the system

absorbs energy.




Example

Two electrons in a 2D parabolic

quantum dot in a magnetic field
B. HA.

= 1 T, both occupy the
(nq, M) = (0,0) state, but with

opposite spin.




Angular symmetry — here we
use a g¢-grid and expand the
angular dependence analytically
in exp(—iNp¢) terms with N, =
0,£1,+2....

Multipole expansion
Graph det e(w)

Single-electron energy levels —
large imaginary part

Collective oscillations — almost

a complex zero, (7 is finite).

det(epsilon)

det(epsilon)

Ns=2, g=-0.44, B=1.0T, Np=+1, J=0, H

6
E (meV)

Ns=2, g=-0.44, B=1.0T, Np=-1, J=0, H




The dispersion of the collective
dipole mode Np = £1

Agrees with an exact analytic

calculation, only center-of-mass

mode is excited. This is not

used in the program.

Higher order modes.

Ns=2, g=-0.44,H




The search for zeros in det e(w) is very complicated in larger systems.
Better to use the symmetry of the external field in an absorption
formula. 7 is kept finite but small — power dissipation, heating.

Use the Joule heating

Pw) = ¢ / drRi(r) - B (r)]

In a 2D system the connection between the response function and the

conductivity
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If n(r,t) is not a primary variable

We use the HFA as an example
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Nonlocal exchange
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Leads to

Y €ap,o7(@){6]¢scly) = (0] Bext|B)
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Now one could use

det €4p,5+(w) =0, a=(n,M,s) fora 2D quantum dot




or calculate the absorption

P(w) = 5 [ dr Reldj(r) - B2, (r)

which for a 2D quantum dot gives

if the external electrostatic potential is

gbeXt(r, t) = g IV exp {—i(w+i07)t — iNyp}




Here the equation for ¢°¢ is already in a matrix form, but the

number of states involved can make it quite large.

1 is used in a simplistic way to mimic the linewidth observed in

experiments.

In a real space method (r or q) one can calculate é(r,t) to

identify modes.

In HFA one can not calculate directly what type of density
oscillations occur, but it is possible to find out which

single-electron transitions contribute the most.
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Calculated power absorption, (N

Absorption
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Calculated dispersion

N=5T=1K

e Left, right polarization

e Bernstein modes (class.)




Induced density

e Mode recognition

e CM « relative motion

E=1.57 meV

E=9.27 meV

E=10.52 meV




Many other effects can be studied combining MF and linear response.

We have only take a simple example here of the density response in

order to introduce computational technical points.




