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We have a �nite eletron system in an external potential

φext = φ0e
−i(ω+iη)tThe total eletrostati potential is

φs(r, t) = φext(r, t) + φind(r, t)where φext is aused by the hange in the harge distribution

φind(r, t) = −
e

κ

∫

dr′
δn(r′, t)

|r− r′|and the density variation δn(r, t) is aused by the total eletrostatipotential φs(r, t)



δn(r, t) =

∫

dr′χ(r, r′, t)(−eφs(r′, t))So we an have a self-onsistent equation for φs

φs(r, t) = φext(r, t) +
e2

κ

∫

dr′dr′′
χ(r′, r′′, t)

|r− r′|
φs(r′′, t)whih is an integral equation in real spae. It an be put on a gridand transformed into a matrix equation, but it is more e�etive tofourier transform it �rst

φs(k, ω) = φext(k, ω) +
4πe2

κk2

∫

dq χ(k,q, ω)φs(q, ω) (∗)where a onvolution property of the Coulomb kernel was used



and the fourier transform of the response funtion

χ(k,q, ω) =
1

(2π)3

∫

dr dr′e−ik·rχ(r, r′, ω)eiq·r′

As (∗) onnets the external and the total eletrostati potential wean ompare it to D = ǫE to write for the dieletri funtion

ǫ(k,q, ω) = δ(k− q)−
4πe2

κk2
χ(k,q, ω)for a 3D �nite eletron system, in a 2D system the fourier transformof the Coulomb kernel is di�erent.



Numerial evaluationEquation (∗) is an integral equation, one way to solve it is on a

q-grid. (speially onvenient if some symmetry an be used to reduethe spatial dimensions).Grid transforms it to a matrix equation
φs = φext + Gχφs or (1−Gχ)φs = φextwhih is equivalent to

ǫφs = φext or φs = (1−Gχ)−1φext = ǫ−1φext



The matrix expression

φs(ω) = (1−Gχ(ω))−1φext(ω) = ǫ−1(ω)φext(ω)

• tells us that zeros in ǫ(ω) or poles in ǫ−1(ω) mean that small externalperturbation φext(ω) ould ause a huge total potential φs(ω) → aresonane.
• A small perturbation might ause an osillation of the harge density

→ plasma waves, plasmons.
• The plasmon would not happen at any of the Bohr frequenies

ωα − ωβ , it is a olletive mode with a depolarization shift.

• In a system with a size muh smaller than the wavelength of anexternal EM radiation φext(ω) an desribe this radiation
→ we an alulate the resonane frequenies at whih the systemabsorbs energy.



Example
Two eletrons in a 2D paraboliquantum dot in a magneti �eld

B. HA.

B = 1 T, both oupy the
(nr,M) = (0, 0) state, but withopposite spin. 5
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Angular symmetry → here weuse a q-grid and expand theangular dependene analytiallyin exp(−iNpφ) terms with Np =

0,±1,±2 . . . .Multipole expansionGraph det ǫ(ω)Single-eletron energy levels →large imaginary partColletive osillations → almosta omplex zero, (η is �nite).
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The dispersion of the olletivedipole mode NP = ±1Agrees with an exat analytialulation, only enter-of-massmode is exited. This is notused in the program.Higher order modes. 0

2

4

6

8

10

0 1 2 3 4 5

E
 (

m
eV

)
B (T)

Ns=2, g=-0.44, H 



The searh for zeros in det ǫ(ω) is very ompliated in larger systems.Better to use the symmetry of the external �eld in an absorptionformula. η is kept �nite but small → power dissipation, heating.Use the Joule heating
P (ω) =

1

2

∫

drℜ[j(r) · E∗(r)]In a 2D system the onnetion between the response funtion and theondutivity

−
e2

κ
χ2D(k,q, ω) =

i

ω
k · σ(k,q, ω) · qgives

P (ω) = −
1

2

ω

(2π)3

∫

dkℑ[kφs(k, ω)φ∗ext(k, ω)]



If n(r, t) is not a primary variableWe use the HFA as an example

Ĥ(t) = ĤHF + δV̂ e−i(ω+i0+)tLinear response, ({ |α〉} are the eigen states of HHF )

δρα,β(t) = fα,β(ω)〈α|δV̂ |β〉e−i(ω+i0+)twith

f
α,β(ω) =



f(ǫβ) − f(ǫα)

~ω + (ǫβ − ǫα) + i~0+

ff

Nonloal exhange

δVα,β = (−e)
n

〈α|φext|β〉 + 〈α|φHind|β〉 + 〈α|φFind|β〉oSelf-onsistene ←− 〈α|φH,Find |β〉 ∼ δρα,β.



Leads to
∑

δ,γ

ǫαβ,δγ(ω)〈δ|φsc|γ〉 = 〈α|φext|β〉with
ǫαβ,δγ(ω) =

{

δδ,αδγ,β − (Hγδ,βα − Fγδ,βα) fδγ(ω)
}

Hγδ,βα =
e2

κ

Z

drdr
′
ψ∗

γ(r′)ψδ(r
′)ψ∗

α(r)ψβ(r)

|r − r
′|

Fγδ,βα =
e2

κ

Z

drdr
′
ψ∗

γ(r′)ψδ(r)ψ
∗

α(r′)ψβ(r)

|r − r
′|Now one ould use

det ǫαβ,δγ(ω) = 0, α = (n, M, s) for a 2D quantum dot



or alulate the absorption
P (ω) =

1

2

∫

dr Re [δj(r) ·E∗
sc(r)]whih for a 2D quantum dot gives

P (ω) = eEextω ∑

αβ

〈β|r|Np||α〉2πδMβ ,Mα±Np
ℑ{fαβ(−eφsαβ)}

if the external eletrostati potential is
φext(r, t) = Eextr|Np| exp {−i(ω + i0+)t− iNpϕ}



• Here the equation for φs is already in a matrix form, but thenumber of states involved an make it quite large.

• η is used in a simplisti way to mimi the linewidth observed inexperiments.
• In a real spae method (r or q) one an alulate δ(r, t) toidentify modes.
• In HFA one an not alulate diretly what type of densityosillations our, but it is possible to �nd out whihsingle-eletron transitions ontribute the most.



Example:dot with nonparabolion�nement
Paraboli + higherterms. . .

↓exitations above theupper Kohn mode 0
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Calulated power absorption, (N = 5, T = 1 K)
0

1

2

3

4

5

6

0

2

4

6

8

10

12

0

2

4

6

8

x 10
−12

B (T)

Absorption

E (meV)



Calulated dispersion
N = 5, T = 1 K

• Left, right polarization
• Bernstein modes (lass.)
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Indued density
• Mode reognition
• CM ↔ relative motion
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Many other e�ets an be studied ombining MF and linear response.We have only take a simple example here of the density response inorder to introdue omputational tehnial points.


