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The mean field approach has also been extended to time-dependent

problems

How does a system respond to an external time-dependent

potential?

e Real-time response, (tdHA, tdHFA or tdLDA), on a lattice,

or in a basis.

e Linear response in real or fourier space, (tdHA or tdLDA),
or in a basis, (tdHFA...).

There are many more important approaches we skip here.




Real-time response, (tdHF') | A. Puente, L. Serra, and V. Gudmundsson,
Phys. Rev. B 64, 235324 (2001), (cond-mat/0108428)., (Atomic units).
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Example, six electrons in a

quantum dot, nonparabolic con-
finement, B # 0.

Motion of the
center-of-mass

in the tdHA

9000 time-steps
3 intervals of 12 ps
B=1T

Amplitude shrinks

Total energy is constant




— Energy must flow into internal modes

Internal Quadrupole and Monopole, (cm-frame)

=2 B

Take expectations values (t-dependent).
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Time evolution

e Weak amplitude
e Strong amplitude

Quantum dot expands —

Monopole oscillation

s around new configuration

(Breathing mode)




New configuration, shape

4

Modified dipole absorption

Large fluctuations of

mean field

4

Large variations in effective

Absorptiofarkunits)

single-particle energies

I
largamp.

Two peak widths qneV)

Time window after expansion “Below-Kohn mode” vanishes




In this approach no dissipation is included in the system,
continuous input of energy as in a harmonic field would not

describe all situations.
Instead of a grid one could use a time-dependent basis.

For a potential periodic in time one can consider Floquet’s

states, a convenient basis for time-harmonic systems.

Self-consistent Floquet states for periodically driven quantum wells, B.
Galdrikian, M. Sherwin, and B. Birnir, Phys. Rev. B 49, 13744-13749
(1994).

For a “weak” time-dependent potential we can use linear
response, R. Kubo, J. Phys. Soc. japan 12, 570 (1957),

Local Density-Functional Theory of Frequency-Dependent linear
Response, E. K. U. Gross and Walter Kohn, Phys. Rev. Letters 55,
2850 (1985).




Linear response

We know { |a), €, } for the system described with
Hola) = €alar)

|} are single-electron states, (no interaction or mean field description

of an interacting system). We add a time-dependent potential
SV (t) = §Ee wHimt [ (t) = Hy + 6V (¢t)
n — 07, the external potential is switched on,

t——00

Hy contains a kinetic term, confinement, and effective MF' potential.




In this effective single-electron picture we can use for the density

operator (likindavirkja)

p(t — —o0) = po = f(Ho)

where f is the fermi distribution. The equation of motion for p is

thp(t) = [H(t), p(t)] = [Ho, p(t)] + [0V (), p(1)]

which becomes

ihdp, s(t) = (€a — €8)dpa,p(t) + (a|[0V (), po + dp(t)]|3)

an exact matrix version of the equation of motion for p




We linearize this equation in oV

ihope 5(t) = (€a — €5)0pa,p(t) + (f5 — fa){aldV (¢)|6)

with f, = f(a). We use a fourier transform

Alt) = — / o =@/ 4 (1)

:% .

that transforms the equation into

W' +in)0pa,p(w') = Mwa = wp)dpa,s(w’) + (f3 — fa)(aldV(w')]5)

or

AMw' + (wg — wa) +11)dpa,s(w’) = (fs — fo)(aldV(w)|B)




Thus we have

1
0pap(W) = — [

(f5 — fa)
w' + (wg — we) +in

] (al5V (w)|8)

We have also for the time-dependent potential, (the external

potential)

/ dt e™"t5V (t) / dt eV = 276 (w — W)V

— o0 — o0
or simply

(@|0V (w')]B) = 2m6(w — w'){a|6V|B)




Fourier transform back to ¢

1 (fs — fa) 1% —iwt+ —iwt+
) . ¢ 5 ? nt 5 . wit+nt
P ,5( ) A ( 3 a) in <Oé‘ ‘B>€ Po,p€

The system responds at the same frequency as excited!
Later we see that a finite system does not only respond at the

same wavelength as excited.

The system is thrown out of equilibrium by dV/(¢).
By 0p we have calculated a nonequilibrium change to the

equilibrium fermi distribution!
n is linked to power dissipation.

How do we use this?




How does 0V (t) change n(r)?
In equilibrium, no 6V (t)

(6(F — 1)) = tr(6(F —r)po) = Y _{al6(F — r)pol)

(87

= (al6(® —r)[8)(Blpola)
o,

_ / dr' (|t} (r'|5(¢ — 1)|8) (8] po|ct)

a,

:Z/dr’¢;(r)5(r—r¢5 10 o = Zfawa = n(r)
o,




on(r,w) = /dr’x(r,r’,w)éV(r’)

where x(r,r’,w) is the retarded density response function of the

system.




e So we have a formalism for calculating the nonequilibrium
response of a system in the linear regime.
External ...
Potential — density response — dielectric function.
Magnetic field — magnetization — susceptibility.

Vector potential — current response — conduction.

But, in a MF description the change in f.ex. density dn(r,w)

creates an internal induced potential — this has to be calculated

self-consistently, next. ..




