Mean field approach - Technical details
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Consider the Hartree (or LDA) equations of motion

{Ho + Vext(r) + Vi (r) }ha(r) = €atha(r)

/ dr’ n(r’, ;1) = N, number of electrons

how do we implement them?




It is possible to use a grid to solve the equations on, or finite element
method.

Here we consider using a mathematical basis

We start with the Schrodinger equation that we want to solve

{Ho + Voxt + VulVa =€Vo or {Hp+ Vext + Vil a) =€)

and assume we know the solutions to

{HO + Vext}¢a = Eo®o O {HO T Vext}|04> = Ea‘a>

We know { |a), F, } and need to find { |a), e, }




The eigenstates { |a) } form a complete orthonormal basis
D la)al=1 « Z¢ =6(r—1')

So we can expand

=Y 18){Bla) =) CsalB) To(r) =5 Cpatp(r)
G B 3

To find the coefficients C,3 we take the inner product of the equation

of motion with (3| and expand |«) as indicated above




The equation of motion transforms into

<BHH0 + Hext + VH} ZCWM — €o Z Cvoz<5|7>

Y Y

Z{E 08,y + (BIVa|7)}Cra = €aCha

Eigenvalue problem for a matrix (infinite dimensional),
no approximation, no differential equations,

compare to perturbation theory.




IF a =1, 2 then

Er + (1|Vu (1) (1|VH|2) Cia
(2| Vi |1) Es + (2|Vi|2) Coa

To use this equation numerically we do an approximation:
Truncate the basis { |a) }

Can be a very high order approximation,

multi parameter variational approach

Test the accuracy by varying the basis size




Evaluation of («|V3|5)

Often the most time consuming part (CPU or human)

If the electron density n(r) is explicitly calculated then

(0| Vir|8) ———/drn / ¢*|r _r| /dr’n(r’)[(r,r’)

The density changes in each iteration (see later), but the kernel

I(r,r’) remains unchanged!

I(r,r’) is often tricky and expensive to evaluate.




If n(r) has a certain symmetry, translation or rotation invariance,

then that part of the r’ integration should be done analytically
Example: Infinite 2D strip of width L,: Do the z-integration

2¢e2

(alVirld) = 2 [aynty) [ dyetw)sao)

Example: Circular symmetry 2D disk: Do the #-integration

(@lValp) = =" [arnt) [ 6u0)0a(rTrr)

r r r!

T(r,r') = {@(r k(D) 0 — r)K(i)}

K (x) is a complete elliptic integral (GR: 8.112)




Why are these expressions easier to use?
e Fewer dimensions to integrate over

e K (x) can be expanded as a series of logarithms,
logarithmic singularities are very easy to integrate analytically or

numerically!

In systems without similar symmetries the integral of the 1/|r — 1’|

kernel is difficult and one should consider expansions as:

!
(55 ) Vi) Yin (0,0

for spherical coordinates (r, 8, ¢)




and for cylindrical coordinates (p, ¢, z)

1 — [ /
= 30 [ ke g o) o e
0

r—r|

Here x. (x~) is the smaller (larger) of x or z’

1/|r — 1’| is the Green function for the Poisson equation in an
isotropic infinite space. Other expansions appropriate for different
geometry and setups can be found by expanding the Green function

in appropriate eigenfunctions, see Jackson CED chapter 3.12 in the
2nd ed.

Good numerical work includes a lot of analytical preparation!




Sometimes n(r) is not of primary interest, f. ex. in HFA or exact

numerical diagonalization, but the wave functions are:

= Zf(%)l%(r) :
—Zf Ca Z ozq¢ Pq(r)

_Zf Ea anpcaq¢ ( )

An example is the matrix element for a 2D quantum dot in a
magnetic field calculated by Ingibjorg Magniisdottir
(http://www.raunvis.hi.is /reports/1999 /RH-08-99.html)
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where p = (M,n..), g = (N,m.), |l = (L,l), and k = (K, k;.),

Ve = kel /(K| + KL,
L—-K=M-N,it K>Land N > M then p < ¢




The last integral can be done analytically, but numerical integration

is faster than the evaluation of the result.

We need to map a set of quantum numbers f. ex. (n,l,m,s) on a

single index 7, or more complex mapping in absorption calculations.

Iterations

(a|V|B) depends on the solutions of H|a) = e,]a), but is also
needed there since H = Hg + Vioyt + Vi

Exact solutions to the nonlinear problem are not known in most cases

To use the linear algebra we use iterations:
Guess at n(r), solve H|a) = €,|a), use the solution to make new
(a|V|B), continue until n? (r) ~ n™ 1(r)




Hope the iteration gives the exact solution

e Most often these simple minded iterations are not convergent!

Simple solution is often damping the change between iterations:
n(r) = en™®W (r) + (1 — e)n0ld (1),

The system might get stuck in a state that is not the ground

state, (HFA) — vary initial conditions.

Instead of the primary quantity n(r) one might use Vi (r), or
(a|VH|B).

Many sophisticated methods exist for each of these problems, see

research literature.




Example: 2 electrons in a quantum dot, HFA
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The exchange interaction starts at iteration 85




Behavior of the chemical potential L.
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In systems with a neutralizing background, the HFA converges faster.
in other systems the exchange can make the convergence more

problematic.
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Density of 3 electrons in

B (T)

Fnergy spectra of a finite width

a dot with square symmetry

quantum ring with 2 or 12 electrons




