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Ising - many-spin - single-spin desriptionThe Ising Hamiltonian
H = −

J

2

∑

〈i,j〉

sisj −B
∑

i

si

is a real many-body Hamiltonian. Can we approximate it by asingle-spin Hamiltonian?Denote the mean value of si by 〈si〉, then
sisj = si〈sj〉 + 〈si〉sj − 〈si〉〈sj〉 + (si − 〈si〉)(sj − 〈sj〉)without an approximation. The system is homogeneous

→ 〈si〉 = 〈s〉 independent of i.



Thus we an rewrite the Hamiltonian

H = −
J

2

∑

〈i,j〉

[si〈s〉 + 〈s〉sj − 〈s〉〈s〉 + (si − 〈s〉)(sj − 〈s〉)] −B
∑

i

si

Two terms are idential, and one is pure orrelation term.We make the approximation
H ≈ −Jq〈s〉

N∑

i

si + J
q

2
N〈s〉2 −B

∑

i

si

q is the number of nearest neighbors, oordination number.This an be simpli�ed as
H ≈ J

q

2
N〈s〉2 − (Bmf +B)

∑

i

si

with Bmf = qJ〈s〉



Now the Hamiltonian
H ≈ J

q

2
N〈s〉2 − (Bmf +B)

∑

i

siis a pure one-body Hamiltonian! The single spin variable si sees anexternal �eld B and an e�etive �eld Bmf reated by all the spins inthe system.But H alone is not enough, we still do not know 〈s〉! One way todetermine 〈s〉 omes from the two de�nitions of magnetization(average magneti dipole moment)
D = N〈s〉 and D = −

∂

∂B
F (N,B, T, 〈s〉)

∣
∣
N,T,〈s〉with

F (N,B, T, 〈s〉) = −kT lnZN (B, T )



This leads to
〈s〉 = tanh {β(qJ〈s〉 +B)} ,an impliit equation for 〈s〉.

• Instead of one linear many-body Hamiltonian with ahuge omplex state spae we now have a set of nonlinearequations, e�etive one-body Hamiltonian, in a simplestate spae.
• Here we an solve the MF equations �analytially�, but in mostsystems we need numerial methods.
• Nonlinear equations ↔ linear algebra + iterations.



Eletroni struture of matterHow do we approah the equation of motion





N∑

i=1

{
1

2m∗
(pi + A(ri))

2 + Vext(ri)

}

+
1

2

N∑

i 6=j

e2

κ|ri − rj |
−E



Ψ = 0

with the time-independent many-eletron antisymmetrized wavefuntion Ψ(r1, r2, · · · , rN ).If Ψ is onstruted from single-eletron wave funtions then it is asum over all possible Slater determinants of them!If N = 100 then we have equivalent to a minimization problem in

3300 ≈ 10150 dimensions! (W. Kohn RMP, 71, 1253 (1998))



Daniela Pfannkuhe will talk about the systems with low N whereexat numerial methods an be used.

Walter Kohn has stated in a provoative manner:In general the many-eletron wave funtion Ψ for a system of Neletrons is not a legitimate sienti� onept, when N ≤ N0, where

N0 ≈ 103.There are 3+ solutions (�nite ↔ extended systems)

• Monte Carlo methods for Ψ.
• Seond quantization, → Nonlinear operator eq,'s, Greensfuntions, oupation spae. . .
• Mean �eld methods.



Fats from many-body alulationsOne of the largest triumphs of the 20th enturyWe hek homogeneous 3D eletron system (3DEG) with density n0and onstant bakground harge density enbsmall parameter for perturbation al. rs(n0):
n0 =

3

4πr30
=

3

4πr3sa
3
B

rs =
r0

aB
, aB =

~
2

me2
= 0.529 Å



Eletron interationEletrons are indistinguishable!
Repulsion

Direct Coulomb (classic) 

Attraction

No force

Exchange force (quantum phen.)



Mean total energy per eletron (in ERyd = me4/(2~
2) = 13.6 eV ):

E =
2.21

r2s
︸︷︷︸kineti−

0.916

rs
︸ ︷︷ ︸exhange−

orrelation

︷ ︸︸ ︷

0.094 + 0.0622 ln (rs) +O(rs)

Diret Coulomb-energy = 0, due to bakground

Ekin >> Eint when rs → 0, high densityMetals: 1.8 < rs < 5Interation is important for low density
n0 is variable in 2DEG



Inhomogeneous - �nite systemThe Diret Coulomb term is not aneled

Numerially exat methodsMany-eletron Hamilton operator
H =

N∑

i=1

{
1

2m∗
(pi + A(ri))

2 + Vconf (ri)

}

+
1

2

N∑

i 6=j

e2

κ|ri − rj |is diagonalized in a trunated many-eletron state spaeWorks for 2-12 eletrons



Mean �eld methodsMany-eletron operator H
︸ ︷︷ ︸linear equation of motion → one-eletron inVeff

︸ ︷︷ ︸nonlin. eq. of motionFor example, Hartree or Hartree-Fok approximation onstruted as:

• An in�nite perturbation series, Feynman diagrams, many-bodytheory. (A. Fetter and J.D. Waleka, Quantum Theory of Many-Partile Systems,MGraw-Hill, (1971).
• Variational approah to H with the ondition that the wavefuntion is a single Slater determinant. E.K.U. Gross, E. Runge and O.Heinonen, Many-partile Theory, Adam Hilger (1991).



HF-equations of motion

{H0 + Vext(r) + VH(r)}ψα(r)

−

∫

dr′∆(r, r′)ψα(r′) = ǫαψα(r)

VH(r) =
e2

κ

∫

dr′
n(r′) − nb(r

′)

|r− r′|

∆(r, r′) =
e2

κ

∑

β

f(ǫβ − µ)
ψ∗

β(r′)ψβ(r)

|r− r′|

n(r) =
∑

α

|ψα(r)|2f(ǫα − µ)

∫

dr′ n(r′, µ) = N, number of eletrons



• Exhange fore → nonloal, not a funtional of n
• Nonlinear equations, solved in one-eletron state spae withiterations, we will go through this later.

• The exhange an be expensive if the density n is a primaryvariable in a program. To be disussed later.

• Exat solutions to the nonlinear equations. . .

• Lak of orrelations. . .
• Higher order approximations. . .


