Mean field approach - introduction

Computational Physi
s

4. október 2010

Ising - many-spin - single-spin description

The Ising Hamiltonian

$$
H = -\frac{J}{2} \sum_{\langle i,j \rangle} s_i s_j - B \sum_i s_i
$$

is ^a real many-body Hamiltonian. Can we approximate it by ^a single-spin Hamiltonian?

Denote the mean value of s_i by $\langle s_i \rangle$, then

$$
s_i s_j = s_i \langle s_j \rangle + \langle s_i \rangle s_j - \langle s_i \rangle \langle s_j \rangle + (s_i - \langle s_i \rangle)(s_j - \langle s_j \rangle)
$$

without an approximation. The system is homogeneous $\rightarrow \langle s_i \rangle = \langle s \rangle$ independent of *i*.

Thus we can rewrite the Hamiltonian

$$
H = -\frac{J}{2} \sum_{\langle i,j \rangle} \left[s_i \langle s \rangle + \langle s \rangle s_j - \langle s \rangle \langle s \rangle + (s_i - \langle s \rangle)(s_j - \langle s \rangle) \right] - B \sum_i s_i
$$

Two terms are identical, and one is pure correlation term.

We make the approximation

$$
H \approx -Jq\langle s \rangle \sum_{i}^{N} s_i + J\frac{q}{2}N\langle s \rangle^2 - B\sum_{i} s_i
$$

q is the number of nearest neighbors, coordination number. This can be simplified as

$$
H \approx J\frac{q}{2}N\langle s\rangle^2 - (B^{\text{mf}} + B)\sum_i s_i
$$

with $B^{\text{mf}} = qJ\langle s \rangle$

Now the Hamiltonian

$$
H \approx J\frac{q}{2}N\langle s\rangle^2 - (B^{\text{mf}} + B)\sum_i s_i
$$

is a pure one-body Hamiltonian! The single spin variable s_i sees an external field B and an effective field B^{mf} created by all the spins in the system.

But H alone is not enough, we still do not know $\langle s \rangle$! One way to determine $\langle s \rangle$ comes from the two definitions of magnetization (average magneti dipole moment)

$$
D = N\langle s \rangle
$$
 and $D = -\frac{\partial}{\partial B}F(N, B, T, \langle s \rangle)|_{N,T,\langle s \rangle}$

with

$$
F(N, B, T, \langle s \rangle) = -kT \ln Z_N(B, T)
$$

This leads to

$$
\langle s \rangle = \tanh \left\{ \beta (q J \langle s \rangle + B) \right\},\,
$$

an implicit equation for $\langle s \rangle$.

- Instead of one linear many-body Hamiltonian with ^a huge complex state space we now have a set of nonlinear equations, effective one-body Hamiltonian, in a simple state spa
e.
- Here we can solve the MF equations "analytically", but in most systems we need numerical methods.
- Nonlinear equations \leftrightarrow linear algebra + iterations.

Electronic structure of matter

How do we approach the equation of motion

$$
\left[\sum_{i=1}^{N} \left\{\frac{1}{2m^*} \left(\mathbf{p}_i + \mathbf{A}(\mathbf{r}_i)\right)^2 + V_{ext}(\mathbf{r}_i) \right\} + \frac{1}{2} \sum_{i \neq j}^{N} \frac{e^2}{\kappa |\mathbf{r}_i - \mathbf{r}_j|} - E\right] \Psi = 0
$$

with the time-independent many-electron antisymmetrized wave function $\Psi(\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N)$.

If Ψ is constructed from single-electron wave functions then it is a sum over all possible Slater determinants of them!

If $N = 100$ then we have equivalent to a minimization problem in $3^{300} \approx 10^{150}$ dimensions! (W. Kohn RMP, 71, 1253 (1998))

Daniela Pfannkuche will talk about the systems with low N where exact numerical methods can be used.

Walter Kohn has stated in a provocative manner:

In general the many-electron wave function Ψ for a system of N electrons is not a legitimate scientific concept, when $N \le N_0$, where $N_0 \approx 10^3$.

There are $3+$ solutions (finite \leftrightarrow extended systems)

- Monte Carlo methods for Ψ.
- Second quantization, \rightarrow Nonlinear operator eq,'s, Greens functions, occupation space...
- Mean field methods.

Facts from many-body calculations

One of the largest triumphs of the 20th century

We check homogeneous 3D electron system (3DEG) with density n_0 and constant background charge density en_b

small parameter for perturbation calc. $r_s(n_0)$:

$$
n_0 = \frac{3}{4\pi r_0^3} = \frac{3}{4\pi r_s^3 a_B^3}
$$

$$
r_s = \frac{r_0}{a_B}, \quad a_B = \frac{\hbar^2}{me^2} = 0.529 \text{ Å}
$$

Mean total energy per electron (in $E_{Ryd} = me^4/(2\hbar^2) = 13.6$ eV):

$$
E = \frac{2.21}{r_s^2} - \frac{0.916}{r_s} - \frac{0.094 + 0.0622 \ln(r_s) + O(r_s)}{\text{kinetic exchange}}
$$

Direct Coulomb-energy = 0, due to background $E_{kin} >> E_{int}$ when $r_s \rightarrow 0$, high density Metals: $1.8 < r_s < 5$

Interaction is important for low density

 n_0 is variable in 2DEG

Inhomogeneous - finite system

The Direct Coulomb term is not canceled

Numerically exact methods

Many-ele
tron Hamilton operator

$$
H = \sum_{i=1}^{N} \left\{ \frac{1}{2m^*} \left(\mathbf{p}_i + \mathbf{A}(\mathbf{r}_i) \right)^2 + V_{conf}(\mathbf{r}_i) \right\} + \frac{1}{2} \sum_{i \neq j}^{N} \frac{e^2}{\kappa |\mathbf{r}_i - \mathbf{r}_j|}
$$

is diagonalized in a truncated many-electron state space Works for 2-12 electrons

Mean field methods

Many-electron operator $H \to 0$ one-electron $\text{in} V_{eff}$ $\overbrace{\hspace{1.5em}}$ linear equation of motion \longrightarrow nonlin. eq. of motion

For example, Hartree or Hartree-Fock approximation constructed as:

- An infinite perturbation series, Feynman diagrams, many-body theory. (A. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, (1971).
- Variational approach to H with the condition that the wave function is a single Slater determinant. E.K.U. Gross, E. Runge and O. Heinonen, Many-parti
le Theory, Adam Hilger (1991).

HF-equations of motion

$$
\{H_0 + V_{ext}(\mathbf{r}) + V_H(\mathbf{r})\}\psi_{\alpha}(\mathbf{r})
$$

$$
- \int d\mathbf{r}' \Delta(\mathbf{r}, \mathbf{r}')\psi_{\alpha}(\mathbf{r}') = \epsilon_{\alpha}\psi_{\alpha}(\mathbf{r})
$$

$$
V_H(r) = \frac{e^2}{\kappa} \int d\mathbf{r}' \frac{n(\mathbf{r}') - n_b(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

$$
\Delta(\mathbf{r}, \mathbf{r}') = \frac{e^2}{\kappa} \sum_{\beta} f(\epsilon_{\beta} - \mu) \frac{\psi_{\beta}^*(\mathbf{r}')\psi_{\beta}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}
$$

$$
n(\mathbf{r}) = \sum_{\alpha} |\psi_{\alpha}(\mathbf{r})|^2 f(\epsilon_{\alpha} - \mu)
$$

$$
\int d\mathbf{r}' n(\mathbf{r}', \mu) = N, \text{ number of electrons}
$$

- Exchange force \rightarrow nonlocal, not a functional of n
- Nonlinear equations, solved in one-electron state space with iterations, we will go through this later.
- The exchange can be expensive if the density n is a primary variable in ^a program. To be dis
ussed later.
- Exact solutions to the nonlinear equations...
- Lack of correlations...
- Higher order approximations. . .