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Ising - many-spin - single-spin description

The Ising Hamiltonian
H = —1 $¢S5 — B S;
2 = .
(4,7) L
is a real many-body Hamiltonian. Can we approximate it by a

single-spin Hamiltonian?

Denote the mean value of s; by (s;), then

8:85 = 8i(85) + (85)85 — (85)(s5) + (8: — (84)) (55 — (85))

without an approximation. The system is homogeneous

— (s;) = (s) independent of i.




Thus we can rewrite the Hamiltonian

Two terms are identical, and one is pure correlation term.

We make the approximation
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q is the number of nearest neighbors, coordination number.

This can be simplified as
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with B = ¢.J(s)




Now the Hamiltonian
-~ 74 2 mf .
H ~ J5N(s)* — (B™ + B) Zsz
is a pure one-body Hamiltonian! The single spin variable s; sees an

external field B and an effective field B created by all the spins in
the system.

But H alone is not enough, we still do not know (s)! One way to

determine (s) comes from the two definitions of magnetization

(average magnetic dipole moment)

9
D=N(s) and D=—2=F(N,B,T(s)|nr

F(N,B,T,{s)) = —kTIn Zy(B,T)




This leads to

(s) = tanh {5(qJ(s) + B)},

an implicit equation for (s).

e Instead of one linear many-body Hamiltonian with a
huge complex state space we now have a set of nonlinear
equations, effective one-body Hamiltonian, in a simple

state space.

e Here we can solve the MF equations “analytically”, but in most

systems we need numerical methods.

e Nonlinear equations « linear algebra + iterations.




Electronic structure of matter

How do we approach the equation of motion
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with the time-independent many-electron antisymmetrized wave

function ¥(ry,ro, -+ ,ry).

If W is constructed from single-electron wave functions then it is a

sum over all possible Slater determinants of them!

If N =100 then we have equivalent to a minimization problem in

3300

~ 10150 dimensions! (W. Kohn RMP, 71, 1253 (1998))




Daniela Pfannkuche will talk about the systems with low N where

exact numerical methods can be used.

Walter Kohn has stated in a provocative manner:

In general the many-electron wave function ¥ for a system of N

electrons 1s not a legitimate scientific concept, when N < Ny, where
NO ~ 103

There are 3+ solutions (finite < extended systems)

e Monte Carlo methods for W.

e Second quantization, — Nonlinear operator eq,’s, Greens

functions, occupation space. ..

e Mean field methods.




Facts from many-body calculations

One of the largest triumphs of the 20th century
We check homogeneous 3D electron system (3DEG) with density 7

and constant background charge density eny

small parameter for perturbation calc. r(ng):
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Electron interaction

Electrons are indistinguishable!

Direct Coulomb (classic)

‘ ‘ Repulsion

Exchange force (quantum phen.)

‘ * No force
‘ ‘ Attraction




Mean total energy per electron (in Egyq = me*/(2h2) = 13.6 eV ):

correlation

—0.094 4 0.06221n (r5) + O(rs)
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kinetic exchange
Direct Coulomb-energy = 0, due to background
Eyin >> E;u: when vy — 0, high density
Metals: 1.8 <r, <5

Interaction is important for low density

no 1s variable in 2DEG




Inhomogeneous - finite system

The Direct Coulomb term is not canceled

Numerically exact methods

Many-electron Hamilton operator
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is diagonalized in a truncated many-electron state space

Works for 2-12 electrons




Mean field methods

Many-electron operator HH — one-electron inV,¢¢

NG _J/
N~ ~"

linear equation of motion  nonlin. eq. of motion

For example, Hartree or Hartree-Fock approximation constructed as:

e An infinite perturbation series, Feynman diagrams, many-body
theory. (A. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems,

McGraw-Hill, (1971).

e Variational approach to H with the condition that the wave

function is a single Slater determinant. e.x.u. Gross, E. Runge and 0.

Heinonen, Many-particle Theory, Adam Hilger (1991).




HF-equations of motion

{Hy + Vexi(r) + Vu(r) o (r)
- / 0 A(E, ' a(r') = catha(D)

/ dr’ n(r’, ;1) = N, number of electrons




Exchange force — nonlocal, not a functional of n

with

iterations, we will go through this later.

The exchange can be expensive if the density n is a primary

variable in a program. To be discussed later.
Exact solutions to the nonlinear equations. . .
Lack of correlations. ..

Higher order approximations. ..




