Háskóli Íslands Raunvísindadeild Eðlisfræðiskor

09.21.52 Safneðlisfræði

Mánudaginn 18. desember 2000, kl. 9-12.

Leyfileg hjálpargögn eru: Vasatölva, kennslubók og stærðfræðihandbók.

- 1. A system consists of N noninteracting atoms. Each atom has three energy levels $E=0,\pm\epsilon$. Evaluate the free energy, the entropy, and the heat capacity as functions of the temperature T when $kT>>\epsilon$.
- 2. In the eighties an experimental group was able to measure the heat capacity of a two-dimensional electron gas in a semiconducting crystal at a low temperature.
 - (a) Calculate the internal energy U of an ideal two-dimensional gas of fermions
 - (b) Calculate the heat capacity of the system.
 - (c) Derive the limiting behavior of the heat capacity in the cases $T \to 0$, and $T \to \infty$. Compare the results to the results for a three-dimensional fermion gas.
- 3. One-dimensional systems often have curious properties. Interacting one-dimensional electron systems in semiconductors at low temperature can be described as noninteracting particles with linear energy dispersion. Show that one-dimensional ideal fermi and bose gases with the energy dispersion E=cp have identical heat capacities. Here p is a momentum and c a velocity.
- 4. Evaluate the entropy per spin S/N, the internal energy U/N, and the heat capacity C/N of the one-dimensional Ising model in no external magnetic field in the thermodynamic limit.